CH 2 POLYNOMIALS

Multiple Choice Questions

(1 mark each)

THE VILLAGE

(a) 12

(b) 49

(c) -24

(d) - 12

2. Zeroes of a polynomial p(y) is...... of the point, where the graph intersects the Y-axis.

(a) abscissa

(b) ordinate

(c) Both (a) and (b)

(d) None of these

3. If -4 is a zero of the polynomial $x^2 - 2x - (7m + 3)$, then find the value of m.

(b) 2

(c) 4

(d) - 2

4. If the zeroes of polynomial $x^2 - 8x + k$ are the HCF of (6, 12), then find the value of k.

(b) 12

(c) 24

(d) None of these

5. If a and b are the zeroes of a polynomial $px^2 - 5x + q$, then the values of p and q, if a + b = ab = 10, are

(a) 5 and 1/2

(b) 5 and 2

(c) 1/2 and 5

(d) 10 and 1

short Answer Type (I) Questions

(2 marks each)

6. Find the quadratic polynomial, whose sum of zeroes is -3 and product of zeroes is 5.

7. If one of the zeroes of the quadratic polynomial $f(x) = 4x^2 - 8kx - 9$ is equal in magnitude but opposite in sign of the other, then find the value of k.

8. Find the zeroes of the quadratic polynomial $7y^2 - \frac{11}{3}y - \frac{2}{3}$ and verify the relationship between the zeroes and their coefficients.

9. Find the quadratic polynomial whose zeroes are $2\sqrt{7}$ and $-5\sqrt{7}$.

Short Answer Type (II) Questions

(3 marks each)

10. Find the value of k for which a - 3b is a factor of $a^4 - 7a^2b^2 + kb^4$. Hence, for the value of k, factorise $a^4 - 7a^2b^2 + kb^4$ completely.

11. If α and β be the zeroes of the polynomial $P(x) = x^2 - 5x + 2$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} - 3\alpha\beta$.

12. If α and β are the zeroes of the polynomials $ax^2 + bx + c$, then find the other polynomial whose zeroes are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$.

Long Answer Type Questions

(5 marks each)

13. If α and β are the zeroes of the quadratic polynomial $f(x) = kx^2 + 4x + 4$, such that $\alpha^2 + \beta^2 = 24$, then find the value(s) of k.

14. If α and β are the zeroes of a quadratic polynomial $3x^2 - 6x + 4$, then find the value of

$$\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta.$$

Answers

1. (a)

2. (b)

6. $x^2 + 3x + 5$

7. k = 0

3. (a) 4. (b) 5 8. $\frac{2}{3}$ and $\frac{-1}{7}$ 9. $x^2 + 3\sqrt{7}x - 70$

10. k = -18 and $(a+3b)(a-3b)(a^2+2b^2)$

12. $x^2 + \frac{b}{a^2c}(b^2 - 3ac)x + \frac{c}{a}$

13. $k = \frac{2}{3}$ or -1**14.** 8

11